Let $m>2$ be an integer with a primitive root $r$. Then, $r^{\phi(m)/2}\equiv-1 \ (\text{mod} \ m)$.
Proof.
$\text{gcd}(-1,m)=1$. Therefore, there exists an integer $0<i\leq\phi(m)$ such that $r^i\equiv-1\ (\text{mod} \ m)$ (So, $\text{ind}_r(m-1)=i$. Then, $r^{2i}\equiv1 \ (\text{mod}\ m)$, and $\phi(m)|2i$. Considering the range of $i$, $2i$ can be either $\phi(m)$ or $2\phi(m)$. However, if $2i=2\phi(m)$, $i=\phi(m)$, which is false because $r^i\equiv-1\not\equiv1\ (\text{mod} \ m)$ since $m>2$. Therefore, $2i=\phi(m)$.
* Here we can obtain the corollary that $\phi(m)$ is an even number if $m>2$. (Note that $\phi(2)=1$ is odd)
We get $i=\phi(m)/2$. End of proof.
'math > number theory' 카테고리의 다른 글
| The product of all primitive roots modulo m is either 1 or -1. (0) | 2025.11.22 |
|---|---|
| If x^2 ≡ 1 (mod m), then either x ≡ 1 (mod m) or x ≡ −1 (mod m). (0) | 2025.11.22 |
| If m>2, ϕ(m) is even. (0) | 2025.11.22 |
| 디오판토스 방정식의 해 구하기 (1) | 2025.09.24 |
| 상수항을 통해 n차방정식의 정수근 찾기 (0) | 2025.09.24 |