Proposition
Let $X$ be a metric space with the metric $d$.
$d : X \times X \rightarrow \mathbb{R}$ is continuous.
Proof
The basis for $\mathbb{R}$ is $(a, b)$. If $\forall a, b$, $d^{-1}((a, b))$ is open in $X \times X$, then d is continuous.
Case 1. $b<0$.
$d^{-1}((a, b))$ is open (empty set).
Case 2. $a < 0 \leq b$
$\forall x \times y \in d^{-1}((a, b))$, $0 \leq d(x, y) < b$
Also, $\forall x_1 \in B(x, \frac{b-d(x, y)}{2}), y_1 \in B(y, \frac{b-d(x, y)}{2})$,
$d(x_1, y_2) < d(x_1, x) + d(x, y) + d(y, y_1)$ (triangular inequality)
Here, $d(x_1, x) < \frac{b-d(x, y)}{2}$ and $d(y, y_1) < \frac{b-d(x, y)}{2} \Rightarrow d(x_1, y_1) < b$.
$\Rightarrow \exists$ open set $B(x, \frac{b-d(x, y)}{2}) \times B(y, \frac{b-d(x, y)}{2}) \subset d^{-1}((a, b))$
$\Rightarrow d^{-1}((a, b))$ is open.
Case 3. $0 \leq a < b$
$\forall x \times y \in d^{-1}((a, b))$, $a < d(x, y) < b$
Also, $\forall x_1 \in B(x, \epsilon), y_1 \in B(y, \epsilon)$,
Where $\epsilon = min( \frac{b-d(x, y)}{2}, \frac{d(x, y)-a}{2} )$
$d(x_1, y_2) < d(x_1, x) + d(x, y) + d(y, y_1)$ (triangular inequality)
Here, $d(x_1, x) < \frac{b-d(x, y)}{2}$ and $d(y, y_1) < \frac{b-d(x, y)}{2} \Rightarrow d(x_1, y_1) < b$.
$d(x, y) < d(x, x_1) + d(x_1, y_1) + d(y_1, y)$ (triangular inequality)
Here, $d(x_1, x) < \frac{d(x, y)-a}{2}$ and $d(y, y_1) < \frac{d(x, y)-a}{2} \Rightarrow a < d(x_1, y_1)$.
$\Rightarrow \exists$ open set $ B(x, \epsilon) \times B(y, \epsilon) \subset d^{-1}((a, b))$
$\Rightarrow d^{-1}((a, b))$ is open.
$\Rightarrow d$ is continuous.
증명에 문제가 있다면 댓글로 의견 부탁드립니다.
Please let me know any errors in the proof in the comments.
'math > topology' 카테고리의 다른 글
| [증명] If each set p⁻¹({y}) is connected, and if Y is connected, then X is connected. (0) | 2025.09.30 |
|---|---|
| [증명] Let An be connected subspaces such that An ∩ An+1 ≠ ∅ for all n.∪An is conn (0) | 2025.09.30 |
| Limit point 이해하기 (0) | 2025.09.21 |
| [증명] the set {x|f(x)≤g(x)} is closed in X (0) | 2025.09.21 |
| [증명] X is Hausdorff if only if the diagonal ∆ = { x × x | x ∈ X } is closed in X × X. (0) | 2025.09.21 |