math/topology

[증명] Munkres Excercise 53.6 (b)

finding wangdo 2025. 10. 23. 15:33

Munkres 53.6(b)
Let $p:E\rightarrow B$ be a covering map. If $B$ is compact and $p^{-1}(b)$ is finite for all $b\in B$, then $E$ is compact.

Proof.

Let $\{U_\alpha\}$ be an open cover of $E$. 

*Recall: a covering map is an open map.

If $E$ is an $n$-fold covering of $B$, $p^{-1}(b)=\{e_1, e_2,...,e_n\}$, there exists a finite subset of $\{U_\alpha\}$ that covers $p^{-1}(b)$, say $\{U_1, U_2, ...,U_n\}$ such that $e_i\in U_i$ for all $i$. Let $N_b$ be a neighborhood of $b$ evenly covered by $b$ and $\dot\bigcup\{V_1,V_2,...,V_n\}$ be the partition of $p^{-1}(N_b)$ into pieces such that $e_i\in V_i$ for all $i$. Let $O_i:=U_i\cap V_i$, then $O_i$ is open and $e_i\in O_i$.

$p(O_1),p(O_2),...,p(O_n)$ are all open because a covering map is an open map. So $M_b:=N_b\cap p(O_1)\cap p(O_2)\cap ... \cap p(O_n)$ is an open subset of $N_b$, and therefore also evenly covered by $p$ such that $b\in M_b$.

$p|_{V_i}:V_i\rightarrow N_b$ is a homeomorphism and $p|_{V_i}(O_i)=p(O_i)$, $M_b\subset p(O_i)=p|_{V_i}(O_i)$ so $(p|_{V_i})^{-1}(M_b)\subset O_i$.

$\bigcup_{i=1}^{n}(p|_{V_i})^{-1}(M_b)=p^{-1}(M_b)$, so $\{O_1, O_2,...,O_n\}$ is a covering of $p^{-1}(M_b)$. Therefore, $\{U_1, U_2, ...,U_n\}$ is a covering of $p^{-1}(M_b)$. 

This concludes that for all $b\in B$, we can find a neighborhood $M_b$ such that $p^{-1}(M_b)$ is covered by $n$ elements of $\{U_\alpha\}$. Then $\{M_b\}$ is a open cover of $B$, and because $B$ is compact, we can find a finite subcover $\{M_1, M_2, ..., M_m\}$. 

$\bigcup_{j=1}^{m}p^{-1}(M_j)=E$ and each of $p^{-1}(M_j)$ can be covered by $n$ elements of $\{U_\alpha\}$. Choosing the $n$ elements for each $j$, $E$ can be covered by $mn$ elements of $\{U_\alpha\}$. We have found the finite subcover, and can conclude $E$ is compact. (중복해서 세는 걸 고려한다면 실제 finite subcover의 원소 개수는 $mn$보다 작을 것이다)

 

End of proof.

 

$For errors in the proof, please let me know in the comments$

증명에 오류가 있다면 댓글 부탁드립니다.